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The self-organization of extended linear polymer chains into condensed globules
has been studied using molecular dynamics methods. In this study we have used
a bead-spring polymer model with 100 beads in which each bead has three de-
grees of freedom. The interaction between all beads is modelled using the Morse
potential, but this interaction is assumed to be 25 times stronger for topological
nearest neighbours along the polymer chain than for topological non-nearest
neighbours. We find that the condensed chains (globules) are amorphous or crys-
talline depending on the relative length of the equilibrium distances for the non-

nearest-neighbour interactions.

The structures of crystalline and amorphous polymers are
usually analyzed separately because the two different
forms are regarded as separate condensed states with
their own mechanisms of molecular packing.'> However,
the condensed polymer may also be considered as a mix-
ture of crystalline and anticrystalline clusters.®> The latter
approach does not specify the morphology inside the
clusters, but does treat amorphous and crystalline states
of the condensed polymer on a common ground. The well
developed traditional methods of theoretical physics are,
however, of limited help in this case because it is not
known how to formulate detailed quantitative mathemati-
cal descriptions of the various qualitative models sug-
gested.” Currently the most promising approach to ana-
lyzing this problem is therefore the use of computer
simulation. Using molecular dynamics methods it is in
principle also possible to carry out detailed simulations
for atomic polymer models, but it is expected that the
main characteristics of polymer chain condensation can
be obtained using simpler and more coarse-grained mod-
els.*® The latter models have the advantage that in ad-
dition to requiring less computer time they are also more
tractable analytically.
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In this paper we report on a study of the three-dimen-
sional self-organization of extended linear bead-spring
polymer chains into condensed globules using molecular
dynamics methods. Each bead in the bead-spring chain
has three degrees of freedom. The main distinction be-
tween the polymer model used in this study and that used
earlier’ is related to the choice of potentials for the in-
teractions between beads that are not topological nearest
neighbours in the polymer chain.

In the case of biopolymers, when performing simula-
tion studies of their dynamic properties, the method of
simulation and the complexity of the model is related to
the characteristic times of change for the properties under
study. For instance, to simulate the fast fluctuations in
the equilibrium atomic structure of a globular protein, a
detailed atomic model of the protein is used, with em-
pirically parametrized terms corresponding to contribu-
tions from bonds, bond angles, hydrogen bonds, etc.” In
this case the molecular dynamics method of simulation is
appropriate. To simulate slower processes, as for in-
stance large-scale conformation changes such as protein
denaturation or folding, one can use a model where many
structural details are neglected.® This is because, on the
timescale of interest, the fast local motions mentioned
above are assumed to be averaged to zero. The residues
can then be presented by, for instance, spheres which are
linked by virtual bonds, and one can use simplified ex-
pressions for the interaction potentials.” The reduced




number of degrees of freedom allow rapid calculation of
forces so that simulations sufficiently long to cover the
timescale of interest are feasible. Simulations of this type
can be performed with the molecular dynamics method,
but also Monte Carlo methods can be used.!%!! Although
in the present work the purpose has not been to study one
biopolymer in particular, the simulation has been of the
abovementioned type, using a simplified polymer model
and the molecular dynamics simulation method. Our
study has been performed in vacuum, i.e. the only inter-
actions present are interactions between the beads in the
model. However, if we had wanted to include the effect
of a solvent, it would be possible to use the technique of
Brownian dynamics simulation,'>!* where the solvent
viscosity is introduced and the random movements of the
solvent molecules are replaced by a stochastic force.
The purpose of the present work has been to study the
basic properties of linear chains when they collapse, and
to see if variation in equilibrium distances for non-nearest
neighbour interactions in the polymer chain can help to
explain its different three-dimensional structures. We find

Fig. 1. Time evolution of the spontaneous folding of an an-
harmonic linear bead—spring chain into a compact globule.
The equilibrium distance for the interaction between nearest
neighbours, r,, next-nearest neighbours, r;, second-nearest
neighbours, r,, etc. are all equal (r,=r,=r,=...). A repre-
sentative selection of conformations as function of time is
shown in (a)—(g). The number of integration steps between
each of the conformations shown was from 1000 to 6000
(see Fig. 2). Note that in (a) and (b) only the right half of the
chain is shown. The final stage corresponds to 15000 in-
tegration steps.
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that these variations play an important role in determin-
ing whether polymer self-organization leads to formation
of amorphous or crystalline globules, respectively.

Polymer model and simulation procedure

In our numerical simulation studies we used a bead-
spring polymer model with 100 beads, where each bead
has three degrees of freedom. The interaction between all
beads is modelled using the anharmonic Morse potential

V(r) = Vo{exp[ - 2aro(r/ro — 1)] = 2exp[ — o ro(r/ro— DI} (1)

where ar,=39.0, r, being the equilibrium distance be-
tween beads and o an interaction parameter. The param-
eter ¥, equals 0.34 eV for a nearest-neighbour interaction.
The interaction is, however, assumed to be 25 times as
weak for topological non-nearest neighbours along the
polymer chain as for topological nearest neighbours, and
the potential in eqn. (1) is therefore reduced by a factor
of 25 for non-nearest neighbours. The strong potential
serves the purpose of defining the nearest-neighbour dis-
tance. We have studied three different combinations of
equilibrium distances for the interaction between pairs of
beads.

Case 1: The equilibrium distance is the same for the in-
teraction between any pair of beads, i.e. ro=r,=r,=..,,
where r,, 1y, r,, ... equal the equilibrium distance for to-
pological nearest neighbours, next-nearest neighbours,

second-nearest neighbours, and so on.
Case 2: Equilibrium distance

2 r=1414 1,

r=ry=ry=..=
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Fig. 2. The relative kinetic energy of the bead—spring chain
described in Fig. 1 as a function of the number of integration
steps. E,, is the kinetic energy of the starting configuration.
Labels (a)—(g) refer to the various conformations shown in
Fig. 1.
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shown in Fig. 1. Correlation functions 15 correspond to the
times marked 1-5 in Fig. 2.
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Case 3: Equilibrium distance r;=./2r, and
rh=ry=..=r,.

The bead-spring chain is first brought to thermo-
dynamic equilibrium with a kinetic energy corresponding
to a temperature of 158 K mol kg~ by picking the ve-
locities of each bead from a Maxwell distribution at that
temperature. Under these conditions it takes 2-5 periods
of bead vibrations to reach a state of thermodynamic
equilibrium, which criterion is the fulfilment of the con-
dition."* <AT?/T?<1/3N, where T is the temperature
and N the number of beads. After this, the nucleation and
evolution of the structure that appears as the chain con-
denses is studied using molecular dynamics methods. The
Newtonian equations of motion are integrated numeri-
cally using the Nordsieck method'® to the fifth order of
accuracy. The optimum time step is equal to 1/22 of the
bead vibration period in order to fulfill the requirement of
conservation of the total energy of the beads.'® One evo-
lution history comprises approximately 750 periods of
bead vibrations, and computing time does not exceed 2 h
on a 486, 33 MHz PC with 4 Mbyte RAM. To perform
the simulations we used the computer program
BELINDA!? written in C. During the evolution of the
chain folding the change in kinetic energy is calculated. In
addition, the pair correlation function for the chain is cal-
culated by means of eqn. (2)

1 n(r

r)=—
&) NIV 4nr?Ar

)

where N/V is the average density of beads and n(r) is the
total number of beads situated at a distance between r
and r+ Ar from a given bead.'®

All the calculations were made on an IBM PC 486. In
other respects the numerical procedure used in this study
is similar to that used previously.>*

Results

The time evolution of the spontaneous folding of an an-
harmonic Case 1 linear bead—spring chain into a compact
globule is shown in Fig. 1. The folding starts at the free
ends of the polymer chain (Figs. 1a and 1b), proceeding
to form larger and larger bead sub-globules (Figs. 1c—1e)
until the two sub-globules merge into one large condensed
globule (Figs. If and 1g). The condensation of the indi-
vidual sub-globules is accompanied by kinetic energy
growth, but as the sub-globules merge the kinetic energy
of the system falls again (Fig. 2). The pair correlation
function at first gives evidence of an initial linear structure
which can be recognized by small maxima at r/r,=2 and
3 (Fig. 3, correlation function 1), where r is the distance
between beads. Subsequently, new peaks appear for
r/ro=1.4-2.0 (Fig. 3, correlation functions 2 and 3).
These maxima are manifestations of the new structure
appearing as the sub-globules are formed (Figs. 1c and
1d). At long times, the pair correlation function trans-
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Fig. 4. Correlation function for a perfect face-centered cubic
lattice at a kinetic energy corresponding to a temperature of
158 K mol kg™ ".

forms into a shape (Fig. 3, correlation functions 4 and 5)
which resembles that of a close-packed face-centered cu-
bic crystal lattice (Fig. 4).

The time evolution of the spontaneous folding of an
anharmonic Case 2 linear bead-spring chain into a com-

by
b
ey

Fig. 5. Time evolution of the spontaneous folding of the
same linear bead—spring chain as described in Fig. 1, except

that r,=r2=r3=...=\/§ ro-
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Fig. 6. The pair correlation function vs. r/r, after completion
of the spontaneous folding of the bead—spring chain shown
in Fig. 5.

pact globule is shown in Fig. 5. Also in this case the
folding of the chain begins at the free ends (Figs. 5a and
5b), but the formation of distinct sub-globules at the end
is much less pronounced than for Case 1 (Fig. 5¢), and
the folding is more uniformly distributed along the chain
(Fig. 5d). It is further noted that the beads in the sub-
globules as well as in the final globule are more loosely
packed (Figs. 5e—5g) than for the globules shown in
Fig. 1 for Case 1. The kinetic energy evolution of the
polymer chain (not shown) is qualitatively similar to that
shown in Fig. 2 for Case 1, but the time development of
the pair correlation function is quite different. From the
very beginning a new maximum appears at r/r,=1.4,
which corresponds to the second coordination sphere.
The peak increases monotonically as the polymer con-
denses. Figure 6 shows the pair correlation function of
the fully condensed globule, which equals what is typical
for an amorphous material.

With regard to the time evolution of the spontaneous
folding of an anharmonic Case 3 linear bead—spring chain
into a compact globule (not shown), the evolution was
similar to that of Case 2. The time evolution of the tem-
perature was seen to be qualitatively similar to that of the
two preceding cases, whereas the pair correlation func-
tion of the condensed chain strongly resembled the cor-
relation function for Case 1 (Fig. 3, correlation function
5).

Discussion

The results of our investigation show the following:
Firstly, there is no radical difference in the time evolution
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of the condensation of an anharmonic chain of beads into
a crystalline or into an amorphous globule. Secondly, a
change in the equilibrium distance in the weak non-near-
est neighbour pair interaction potential has drastic con-
sequences for the final structure of the condensed poly-
mer chain globule and determines whether the final
structure is crystalline or amorphous.

It appears that most of the differences in the structures
of the condensed polymers can be accounted for by geo-
metrical considerations of polymer packing. The critical
aspect seems to be the compatibility of the details of the
structure that minimizes the internal energy associated
with the strong nearest-neighbour interactions and the
structure that minimizes the energy associated with weak
non-nearest neighbour interactions. With compatibility
we mean how good different structural elements can in-
termix without giving rise to voids or distortions in the
lattice. To try to explain the condensation in the simu-
lated three-dimensional case, for simplicity we will illus-
trate the abovementioned point by looking at condensa-
tion of polymer chains in two dimensions.

In Case 1 is complete compatibility between the struc-
tures that maximize all nearest-neighbour and all non-
nearest-neighbour interactions. As a consequence the
chain can be folded compactly into a crystal with a tri-
angular lattice, obtaining complete packing without dis-
tortion (Fig. 7a). Here we have only two possible ele-
ments: (1) a straight linear structure and (2) a 60° zigzag
structure. Note that these two structural elements are
compatible in that they can intermix without giving rise to
voids or distortions in the lattice. One may, however, ex-
perience kinetically trapped voids. When the two sub-
globules that meet are about to merge into one large glob-
ule the surfaces of the two sub-globules that come in
contact are unlikely to match structurally. This will at
least initially give rise to kinetically trapped vacancies in
the lattice structure and contribute to non-zero values of
the space correlation function for distances not corre-
sponding to ideal face-centered cubic lattice.

In Case 2 there are three structural elements: (1) a trap-
ezoid zigzag structure (Fig. 7b), (2) a straight linear struc-
ture (Fig. 7c¢) and (3) a staircase zigzag structure
(Fig. 7e). All these elements are incompatible with one
another and can coexist only in the form of short dis-
torted elements. As a consequence, we have a loose
amorphous structure with heavily distorted and uncom-
patible structural elements.

In Case 3 there are also three structural elements: (1) a
straight linear structure, (2) a 90° zigzag structure and
(3) a staircase zigzag structure (Figs. 7c—7e, respectively).
Here only a stack of slightly distorted parallel staircase
zigzag structures can form a compact cubic crystal. The
other elements are not compatible with a staircase zigzag
structure, so they will represent folding faults. The dif-
ference between Case 3 and Case 1 is the difference in
equilibrium distance for the second-nearest neighbours.
The difference between Case 3 and Case 2 is the differ-
ence in equilibrium distance for the third and all higher-
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Fig. 7. Compact packing of polymer chains in two dimensions involves several possible basic structural elements: (a) Coexisting
straight lines and 60° zigzags on a triangular lattice. Note that these two structural elements are fully compatible in that they
can coexist without giving rise to lattice distortions or voids (dense packing). (b) Trapezoidal zigzag on a triangular lattice. These
structural elements are incompatible in that they can not give rise to void-free packing. (c) Straight parallel lines on a triangular
lattice (dense packing). (d) 90° zigzag on a triangular lattice (dense packing). (e) Staircase zigzags on a square lattice (dense

packing).

order neighbours. Case 3 may therefore be viewed as an
intermediate between Case 1 and Case 2. It is here of
interest to note that the time evolution of the chain struc-
ture for Case 3 during condensation is similar to that of
Case 2, whereas the development of the pair correlation
function strongly resembles that of Case 1.

Conclusion

We have considered the importance of the bead—bead
interactions on the self-organization of bead—spring poly-
mer chains. As the polymer chain folds and becomes
more condensed different structural elements can be ob-
served. These elements are short straight linear structures
and triangular- and right-angled zigzag structures. When
these structural elements are completely compatible with
one another a perfect crystalline structure can form.
However, if they are not compatible a non-perfect crys-
talline structure appears with irregular structures in be-
tween the regions of compatible structural elements. Con-
densation of a polymer chain that yield only incompatible
structural elements results in a final globule with amor-
phous structure.
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